A Note on Properties That Imply the Fixed Point Property
نویسنده
چکیده
A Banach space X is said to satisfy the weak fixed point property (fpp) if every nonempty weakly compact convex subsetC, and every nonexpansivemapping T : C→ C (i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for every x, y ∈ C) has a fixed point, that is, there exists x ∈ C such that T(x) = x. Many properties have been shown to imply fpp. The most recent one is the uniform nonsquareness which is proved by Mazcuñán [20] solving a long stand open problem. Other well known properties include Opial property (Opial [21]), weak normal structure (Kirk [17]), property (M) (Garcı́a-Falset and Sims [12]), R(X) < 2 (Garcı́aFalset [10]), and UCED (Garkavi [13]). Connection between these properties were investigated in Dalby [3] and Xu et al. [27]. We aim to continue the study in this direction. In contrast to [3], we do not assume that all Banach spaces are separable.
منابع مشابه
Nonexpansive mappings on complex C*-algebras and their fixed points
A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...
متن کاملCharacterization of weak fixed point property for new class of set-valued nonexpansive mappings
In this paper, we introduce a new class of set-valued mappings which is called MD-type mappings. This class of mappings is a set-valued case of a class of the D-type mappings. The class of D-type mappings is a generalization of nonexpansive mappings that recently introduced by Kaewkhao and Sokhuma. The class of MD-type mappings includes upper semi-continuous Suzuki type mappings, upper semi-con...
متن کاملCommon Fixed Point Theorems for Weakly Compatible Mappings by (CLR) Property on Partial Metric Space
The purpose of this paper is to obtain the common fixed point results for two pair of weakly compatible mapping by using common (CLR) property in partial metric space. Also we extend the very recent results which are presented in [17, Muhammad Sarwar, Mian Bahadur Zada and Inci M. Erhan, Common Fixed Point Theorems of Integral type on Metric Spaces and application to system of functional equat...
متن کاملSuzuki-type fixed point theorems for generalized contractive mappings that characterize metric completeness
Inspired by the work of Suzuki in [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861--1869], we prove a fixed point theorem for contractive mappings that generalizes a theorem of Geraghty in [M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604--608]an...
متن کاملFixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
متن کامل